Shrinkage and Denoising by Minimum Message Length

نویسندگان

  • Daniel F. Schmidt
  • Enes Makalic
چکیده

This paper examines orthonormal regression and wavelet denoising within the Minimum Message Length (MML) framework. A criterion for hard thresholding that naturally incorporates parameter shrinkage is derived from a hierarchical Bayes approach. Both parameters and hyperparameters are jointly estimated from the data directly by minimisation of a two-part message length, and the threshold implied by the new criterion is shown to have good asymptotic optimality properties with respect to zero-one loss under certain conditions. Empirical comparisons made against similar criteria derived from the Minimum Description Length principle demonstrate that the MML procedure is competitive in terms of squared-error loss.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Minimum Message Length Shrinkage Estimation

This note considers estimation of the mean of a multivariate Gaussian distribution with known variance within the Minimum Message Length (MML) framework. Interestingly, the resulting MML estimator exactly coincides with the positive-part JamesStein estimator under the choice of an uninformative prior. A new approach for estimating parameters and hyperparameters in general hierarchical Bayes mod...

متن کامل

A Novel NeighShrink Correction Algorithm in Image Denoising

Image denoising as a pre-processing stage is a used to preserve details, edges and global contrast without blurring the corrupted image. Among state-of-the-art algorithms, block shrinkage denoising is an effective and compatible method to suppress additive white Gaussian noise (AWGN). Traditional NeighShrink algorithm can remove the Gaussian noise significantly, but loses the edge information i...

متن کامل

A Robust Image Denoising Technique in the Contourlet Transform Domain

The contourlet transform has the benefit of efficiently capturing the oriented geometrical structures of images. In this paper, by incorporating the ideas of Stein’s Unbiased Risk Estimator (SURE) approach in Nonsubsampled Contourlet Transform (NSCT) domain, a new image denoising technique is devised. We utilize the characteristics of NSCT coefficients in high and low subbands and apply SURE sh...

متن کامل

Extensions to MDL denoising

The minimum description length principle in wavelet denoising can be extended from the standard linear-quadratic setting in several ways. We describe briefly three extensions: soft thresholding, histogram modeling and a multicomponent approach. The MDL hard thresholding approach based on the normalized maximum likelihood universal modeling can be extended to include soft thresholding shrinkage,...

متن کامل

Digital Image Processing using Local Segmentation

A unifying philosophy for carrying out low level image processing called “local segmentation” is presented. Local segmentation provides a way to examine and understand existing algorithms, as well as a paradigm for creating new ones. Local segmentation may be applied to range of important image processing tasks. Using a traditional segmentation technique in intensity thresholding and a simple m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008